Funções, Constante, 1º e 2 Grau

26-06-2011 12:25

 1 - Determine a função f(x) = ax + b, sabendo-se que f(2) = 5 e f(3) = -10.

SOLUÇÃO:
Podemos escrever:
5 = 2.a + b
-10 = 3.a + b

Subtraindo membro a membro, vem:
5 - (- 10) = 2.a + b - (3.a + b)
15 = - a \ a = - 15

Substituindo o valor de a na primeira equação (poderia ser na segunda), fica:
5 = 2.(- 15) + b \ b = 35.
Logo, a função procurada é: y = - 15x + 35.

Agora resolva esta:
A função f é definida por f(x) = ax + b. Sabe-se que f(-1) = 3 e f(3) = 1, então podemos afirmar que f(1) é 
igual a:
*a) 2 
b) -2 
c) 0 
d) 3 
e) -3

Exercícios Resolvidos

1 - UCSal - Sabe-se que -2 e 3 são raízes de uma função quadrática. Se o ponto 
(-1 , 8) pertence ao gráfico dessa função, então:
a) o seu valor máximo é 1,25 
b) o seu valor mínimo é 1,25 
c) o seu valor máximo é 0,25 
d) o seu valor mínimo é 12,5 
*e) o seu valor máximo é 12,5.

SOLUÇÃO:
Sabemos que a função quadrática, pode ser escrita na forma fatorada:
y = a(x - x1)(x - x2) , onde x1 e x2, são os zeros ou raízes da função.

Portanto, poderemos escrever:
y = a[x - (- 2 )](x - 3) = a(x + 2)(x - 3)
y = a(x + 2)(x - 3)

Como o ponto (-1,8) pertence ao gráfico da função, vem:
8 = a(-1 + 2)(-1 - 3)
8 = a(1)(-4) = - 4.a
Daí vem: a = - 2

A função é, então: y = -2(x + 2)(x - 3) , ou y = (-2x -4)(x - 3)
y = -2x2 + 6x - 4x + 12
y = -2x2 + 2x + 12

Temos então: a = -2 , b = 2 e c = 12.
Como a é negativo, concluímos que a função possui um valor máximo.
Isto já elimina as alternativas B e D.

Vamos então, calcular o valor máximo da função.
D = b2 - 4ac = 22 - 4 .(-2).12 = 4+96 = 100
Portanto, yv = - 100/4(-2) = 100/8 = 12,5
Logo, a alternativa correta é a letra E.

2 - Que número excede o seu quadrado o máximo possível?
*a) 1/2 
b) 2 
c) 1 
d) 4 
e) -1/2

SOLUÇÃO:
Seja x o número procurado.
O quadrado de x é x2 .
O número x excede o seu quadrado , logo: x - x2.
Ora, a expressão anterior é uma função quadrática y = x - x2 .

Podemos escrever:
y = - x2 + x onde a = -1, b = 1 e c = 0.
O valor procurado de x, será o xv (abcissa do vértice da função).

Assim,
xv = - b / 2.a = - 1 / 2(-1) = 1 / 2
Logo, a alternativa correta é a letra A .

Agora resolva estes similares:

1 - A diferença entre dois números é 8. Para que o produto seja o menor possível, um deles deve ser:
a) 16 
b) 8 
*c) 4 
d) -4
e) -16

2 - A diferença entre dois números é 8. O menor valor que se pode obter para o produto é:
a) 16 
b) 8 
c) 4 
d) -4 
*e) -16