Trigonometria, Funções Inversas
Exercício Resolvido
Qual o domínio e o conjunto imagem da função y = arcsen 4x? Analogamente definiríamos as funções arco coseno e arco tangente . 1. Função arco coseno 2. Função arco tangente Exercícios Resolvidos: 1. Calcule y = tg(arcsen 2/3) Solução: 2. Calcular o valor de y = sen(arc tg 3/4). Solução: Agora resolva os seguintes: 1) Qual o domínio da função y = arccos(1 – logx)? 2) Resolver a equação: arcsenx = 2 arccosx
Solução:
Podemos escrever: 4x = seny. Daí, vem:
Para x: -1 £ 4x £ 1 Þ -1/4 £ x £ 1/4. Portanto, Domínio = D = [-1/4, 1/4].
Para y: Da definição vista acima, deveremos ter -p /2 £ y £ p /2.
Resposta: D = [-1/4, 1/4] e Im = [-p /2, p /2].
y = arccosx Û x = cosy , para 0 £ y £ p e –1 £ x £ 1.
Exemplo: cos 60º = 1/2, logo 60º = arccos 1/2 (Obs: 60º = p /3 rad)
y = arctgx Û x = tgy , para -p /2 < y < p /2 e x Î R.
Exemplo: tg 45º = 1, logo 45º = arctg 1 (Obs: 45º = p /4 rad)
Seja w = arcsen 2/3. Podemos escrever senw = 2/3. Precisamos calcular o cosw. Vem:
sen2w + cos2w = 1 (Relação Fundamental da Trigonometria).
Substituindo o valor de senw vem:
(2/3)2 + cos2w = 1 de onde conclui-se: cos2w = 1 – 4/9 = 5/9.
Logo:
cosw = ± Ö 5 / 3. Mas como w = arcsen 2/3, sabemos que o arco w pode variar de
–90º a +90º, intervalo no qual o coseno é positivo. Logo: cosw = +Ö 5 /3.
Temos então: y = tg(arcsen 2/3) = tgw = senw / cosw = [(2/3) / (Ö 5/3)] = 2/Ö 5
Racionalizando o denominador, vem finalmente y = (2Ö 5)/ 5 que é o valor de y procurado.
Seja w = arc tg 3/4. Podemos escrever:
tgw = 3/4 Þ senw / cosw = 3/4 Þ senw = (3/4).cosw
Da relação fundamental da Trigonometria, sen2w + cos2w = 1, vem, substituindo o valor de senw:
[(3/4).cosw]2 + cos2w = 1 \ 9/16.cos2w + cos2w = 1 \ 25/16 . cos2w = 1
cos2w = 16/25 Þ cosw = ± 4/5.
Como w = arctg 3/4, sabemos da definição da função arco tangente que w varia no intervalo
–90º a +90º , intervalo no qual o coseno é positivo.
Logo, cosw = + 4/5.
Mas, senw = (3/4).cosw = (3/4).(4/5) = 3/5 , e portanto:
y = sen(arctg 3/4) = senw = 3/5, que é a resposta procurada.
Respostas: 1) D = [1,100] 2) x = Ö 3/2.