Geometria Analítica, Parábola
1 - Introdução
Se você consultar o Novo Dicionário Brasileiro Melhoramentos - 7ª edição, obterá a seguinte definição para a parábola: Esta definição não está distante da realidade do rigor matemático. (Os dicionários, são, via de regra, uma boa fonte de consulta também para conceitos matemáticos, embora não se consiga neles - é claro - a perfeição absoluta, o que, de uma certa forma, é bastante compreensível, uma vez que a eles, não cabe a responsabilidade pela precisão dos conceitos e definições matemáticas). 2 - Definição Considere no plano cartesiano xOy, uma reta d (diretriz) e um ponto fixo F (foco) pertencente ao eixo das abcissas (eixo dos x), conforme figura abaixo: 3 - Equação reduzida da parábola de eixo horizontal e vértice na origem Observando a figura acima, consideremos os pontos: F(p/2, 0) - foco da parábola, e P(x,y) - um ponto qualquer da parábola. Considerando-se a definição acima, deveremos ter: PF = PP' Daí, vem, usando a fórmula da distancia entre pontos do plano cartesiano: Desenvolvendo convenientemente e simplificando a expressão acima, chegaremos à equação reduzida da parábola de eixo horizontal e vértice na origem, a saber: 3.1 - Parábola de eixo horizontal e vértice no ponto (x0, y0) Se o vértice da parábola não estiver na origem e, sim, num ponto (x0, y0), a equação acima fica: 3.2 - Parábola de eixo vertical e vértice na origem Não é difícil provar que, se a parábola tiver vértice na origem e eixo vertical, a sua equação reduzida será: x2 = 2py 3.3 - Parábola de eixo vertical e vértice no ponto (x0, y0) Analogamente, se o vértice da parábola não estiver na origem, e, sim, num ponto (x0, y0), a equação acima fica: (x - x0)2 = 2p(y - y0) Fim
"Curva plana, cujos pontos são eqüidistantes de um ponto fixo (foco) e de uma reta fixa (diretriz) ou curva resultante de uma secção feita num cone por um plano paralelo à geratriz. Curva que um projétil descreve."
Denominaremos PARÁBOLA, à curva plana formada pelos pontos P(x,y) do plano cartesiano, tais que
PF = Pd onde:
PF = distância entre os pontos P e F
PP' = distância entre o ponto P e a reta d (diretriz).
Importante: Temos portanto, a seguinte relação notável: VF = p/2
y2 = 2px onde p é a medida do parâmetro da parábola.
(y - y0)2 = 2p(x-x0)